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Explanation

Multidimensional scaling (MDS) is an exploratory technique that creates graphical depictions of the
overall (dis)similarities among some set of subjects. The method is a useful way to visually represent
multidimensional differences within small sets. In this tutorial, we will focus on basic, “classical” scaling.
Know that more sophisticated and flexible techniques are available in R.

Illustrative Example

SpeedyMart is convenience store chain. The company is developing its marketing strategy. Part of this
process involves identifying their competition. Companies are taken to be more direct competitors if they are
more similar SpeedyGas.

The team assembles data on SpeedyMart and 7 other convenience store chains in Fake Town, USA. This data
includes information on prices (average mark up), overall selection (number of products sold), hours opened
per week, hot/prepared food selection (number of products available), average age of the internal decor (in
months), and average walking distance from people’s front doors to the closest chain location (in minutes).

The (fictitious) data are given below. Based on these data, which companies most directly compete with
SpeedyMart? And how easy is it to tell?

store prices selection open hot decor walk

SpeedyMart 0.18 825 168 16 48 27
QuickChecks 0.12 900 168 60 35 48
Mack’s 0.17 750 126 30 125 19
24/365 0.32 700 168 45 50 33
Lovely’s 0.12 2200 126 80 28 120
WooWoo 0.18 500 168 75 45 50
DayMart 0.35 650 84 12 30 50
SkinnyMart 0.41 240 84 0 14 130

With MDS, you can generate a visual depiction of these units’ overall similarity. Such an operation might
render something like this:
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MDS: Similarity of Eight Convenience Stores over Two Dimensions

We have reduced the differences among five variables to a graphically-depicted two-dimensional space. The
method doesn’t tell us what these dimensions mean. Such a determination involves interpretive rather than
calculative work. However, it does tell us that the 24/365 store is most similar to SpeedyMart, and thus
the store’s most direct competitor. QuickChecks and WooWoo (who are themselves strong competitors)
and Mack’s appear to also operate closer to SpeedyMart’s competitive space. The operation suggests that
Lovely’s and SkinnyMart are very different stores from SpeedyMart, and thus less of a competitive concern.

The Model

Where as many of the analytical methods that we studied in this course are based on correlations and
covariances, MDS uses distance metrics, which measure the magnitudes of differences between units of
analysis. Perhaps the best-known distance measure is the Euclidian distance metric, which is measured as:

Di =

√

√

√

√

q
∑

k=1

(xik − xjk)2

Where:

• xij is the value of variable k on unit i

• xjk is the value of variable k for unit j

• q is the total number of variables being used to calculate the distances.

So the distance between units i and j are measured through the differences between them on q metrics.

MDS takes these distance metrics and maps them onto lower-dimensional spaces. See Everitt and Hothorn
(2011, pp. 106 - 110) for a fuller exposition of how these coordinates are calculated.
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Implementation

We implement the operation over the following steps:

1. Standardize the variables
2. Calculate a distance matrix
3. Create an MDS object
4. Diagnose the MDS’s fit
5. Visualize the MDS

Data

In this exercise, we will look at data comparing living standards in the United States’ ten largest metro areas.
Our variables include:

• Cost of living index (variable: costliving). Index by Expatisan
• Murder rate per 100,000 people (murder)
• per capita GDP in metro area (gdp)
• Transit ratings (transit). Index by AllTransit
• Metro area unemployment rate (unemployment)
• Poverty rate (poverty)

Here’s the data:

## city costliving murder gdp transit unemployment poverty

## 1 New York 246 3.39 71084 9.6 3.3 17.5

## 2 Los Angeles 196 7.01 67763 7.7 3.7 20.0

## 3 Chicago 184 24.13 61170 9.1 3.8 16.4

## 4 Dallas 161 12.48 64824 6.9 2.8 17.3

## 5 Washington 205 16.72 74000 9.3 2.9 11.0

## 6 Houston 148 11.50 63311 5.9 3.2 19.6

## 7 San Francisco 238 6.35 89978 9.6 2.4 12.0

## 8 Philadelphia 172 20.06 63519 9.0 3.1 16.3

## 9 Boston 200 8.35 78463 9.4 2.4 12.3

## 10 Atlanta 169 16.41 56840 7.9 3.0 17.3

Our task to to identify whic movies have similar combinations of budgets, receipts, critic ratings, and popular
ratings.

Step 1: Standardize Variables

Our first step is to standardize variables, such that variables denominated in larger units do not exert undue
influence over our distance estimates. we will use the standardize() command in the psycho package:

library(psycho)

STD.DATA <- standardize(DATA)

#A look at the top lines.

head(STD.DATA)[1:5]

## city costliving murder gdp transit

## 1 New York 1.6947769 -1.39715876 0.2047148 0.9056851

## 2 Los Angeles 0.1284397 -0.85037879 -0.1371285 -0.5777646

## 3 Chicago -0.2474813 1.73549775 -0.8157714 0.5153036

## 4 Dallas -0.9679964 -0.02416707 -0.4396511 -1.2023751

## 5 Washington 0.4103804 0.61626030 0.5048700 0.6714562

## 6 Houston -1.3752441 -0.17219038 -0.5953900 -1.9831381
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Step 2: Calculate Distance Matrix

Next, we calculate the distance matrix using the dist() command in the base package. Here, we use the
Euclidean distance.

#Calculate Distance Matrix

DIST <- dist(STD.DATA[-1], method = "euclidean")

Step 3: Create MDS Object

We use this distance matrix as input for an MDS object using the cmdscale() in the base package. Here is
an example of an MDS operation that tries to reduce the differences in these six variables to three dimensions:

#Create Classical Scaling Matrix

#Try reduction to four dimensions

MDS <- cmdscale(DIST, k = 3 , eig = TRUE)

Step 4: Diagnose Fit

As is always the case in data reduction, information is loss in the process of simplifying these relationships.
The number of large eignvalues gives you a guide to how many dimensions you can use without too much
information loss.

MDS$eig

## [1] 3.108821e+01 1.123322e+01 9.502425e+00 1.525951e+00 4.302774e-01

## [6] 2.199240e-01 1.538565e-15 1.499720e-15 1.177870e-15 -1.614922e-15

Eignvalues get small around the third value, suggesting that the information gains after using a third
dimension get smaller. It suggests that a two dimensional MDS will encapsulate much of the difference
between these units, but that there will still be some information loss.

Does the MDS recover the original distances fully?

max(abs(dist(STD.DATA[-1]) - dist(cmdscale(DIST, k = 3))))

## [1] 0.2908375

Were this zero, we could confidently say that there is no information loss. However, there will be some
information loss here. Still three dimensions cover a lot of ground. Below, we find that three dimensions
cover 96% of summed eignvalues.

cumsum(abs(MDS$eig))/sum(abs(MDS$eig))

## [1] 0.5757075 0.7837300 0.9597009 0.9879592 0.9959273 1.0000000 1.0000000

## [8] 1.0000000 1.0000000 1.0000000

By the third dimension, 96% of the summed eignvalues have been captured. A three dimensional solution
should encapsulate these differences well. ‘

Step 5: Visualize

Finally, we plot the visualizations. In this example, we will use a three-dimensional figure (so that you have
an example in your notes).

Here, we are going to reduce to three dimensions. As shown above, it captures a lot of these differences. Plus,
I want to be sure to include a model to visualize a three dimension solution as well as the two dimensional
example above. For 3D plots, we use the text3D() from the package plot3D.
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#Data table for plotting:

RESULTS <- cbind(STD.DATA[1], MDS$points)

names(RESULTS) <- paste(c("city", "X1", "X2", "X3"))

#Note: Creating a list of shortened city names to

#make figure more legible

RESULTS$city

## [1] New York Los Angeles Chicago Dallas Washington

## [6] Houston San Francisco Philadelphia Boston Atlanta

## 10 Levels: Atlanta Boston Chicago Dallas Houston Los Angeles ... Washington

citynames <- c("NY", "LA", "CHI", "DAL", "DC", "HOU", "SF", "PHI", "BOS", "ATL")

#Plotting 3D

#Note that color depict Z-axis

library(plot3D)

text3D(x = RESULTS$X1, y = RESULTS$X2, z = RESULTS$X3,

colvar = RESULTS$X3, col = gg.col(100),

labels = citynames, bty="b2", theta = 60, phi = 20)
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